
Open PostgreSQL Monitoring
Documentation

Release 2.4

OPMDG

Apr 13, 2022

Contents

1 Important 1

2 Contents: 3
2.1 General . 3
2.2 OPM Core . 6
2.3 Probes . 13
2.4 Developers . 30
2.5 LICENSE . 33

3 Indices and tables 35

i

ii

CHAPTER 1

Important

Warning: This documentation is a work in progress.

If you have any question that is not yet answered here, feel free to create an issue, so that we can improve it.

1

https://github.com/opmdg/opm-doc/issues

Open PostgreSQL Monitoring Documentation, Release 2.4

2 Chapter 1. Important

CHAPTER 2

Contents:

2.1 General

2.1.1 The UI is up, but I don’t see anything

Here are the things to check and fix:

Are there perfdata generated?

On the Nagios server, check if perfdata are generated. The location is defined in the
proces-service-perfdata-file and proces-host-perfdata-file commands on Nagios, as
seen in Nagios & nagios_dispatcher section.

Assuming default configuration (/var/lib/nagios3/spool/perfdata/), you can check like this:

ls -al /var/lib/nagios3/spool/perfdata/

Warning: Obviously, you need to have configured Nagios so that checks are actually performed to expect perfdata
generated.

If files are getting created, you can skip to the next item. Otherwise, you need to configure Nagios so perfdata are
processed, as documented in Nagios & nagios_dispatcher. Also be careful, if the nagios_dispatcher is running,
perfdata files won’t stay long in the perfdata directory.

Is nagios_dispatcher running?

If perfdata are being generated but are accumulating, you have an issue with the nagios dispatcher:

• check and double check the configuration file

– perfdata directory

3

Open PostgreSQL Monitoring Documentation, Release 2.4

– connection credentials

– host and port

• check the connection with the opm database

– PostgreSQL logs

– pg_hba and/or credentials

• check that the daemon is running:

root:~# ps aux | grep nagios_dispatcher

• check the nagios dispatcher logs

• beware: debug=1 in the dispatcher configuration file will make it stop

at the first problem in the data.

When the perfdata are being removed from the perfdata directory, you can move to the next item.

Are the perfdata accumulating in the hub table?

If the nagios_dispatcher is running and perfdata files being removed, lines should be added in the wh_nagios.hub
table of the opm database:

opm=# SELECT COUNT(*) FROM wh_nagios.hub;

Warning: If you don’t see any line appearing in this table, it’s very likely that you’re looking at the wrong server
and/or the wrong database.

According to the wh_nagios documentation, you should have setup a cron to call the wh_nagios.
dispatch_record() stored function every minute.

If after some minutes the number of records doesn’t fall, there’s a problem with this cron. Make sure to double check:

* output of this cron if you redirected it to a file or a mail

* credential access (you can use a `.pgpass file

<http://www.postgresql.org/docs/current/static/libpq-pgpass.html>‘_ if needed)

• host, port, user, database. . .

• check the connection with the opm database

– PostgreSQL logs

– pg_hba and/or credentials

Once the wh_nagios.dispatch_record() is successfully called, the data will appear in the user tables. You
can check for instance the number of servers the UI knows about:

opm=# SELECT COUNT(*) FROM public.servers;

4 Chapter 2. Contents:

http://www.postgresql.org/docs/current/static/libpq-pgpass.html

Open PostgreSQL Monitoring Documentation, Release 2.4

I still can’t see anything in the UI

• check the credentials for the dedicated UI user

• check the UI configuration file

• check the connection with the opm database

– PostgreSQL logs

– pg_hba and/or credentials

• check the UI logs. For instance, if you used an Apache server, the opm.log. If you tried with the morbo tool,
then the standard output.

• check that you connect to the good OPM UI server.

2.1.2 Getting started

Overview

OPM is a set of tools working above Nagios (or similar) to store into a database the perfdata retrieved by any Nagios
agent and graph them in a web dashboard.

check_pgactivity (https://github.com/OPMDG/check_pgactivity) is a Nagios agent dedicated to PostgreSQL. It is tech-
nically separated from OPM.

Requirements & Installation

We suppose that you have in place and configured to your need:

• a working Nagios (or similar) installation

• agents displaying perfdata (e.g. check_pgactivity or other Nagios probes)

• an empty PostgreSQL database (9.3 or later) on the instance of your choice to store the data.

See the Installation page to install:

• the opm_core and wh_nagios extensions

• the nagios dispatcher script to retrieve the perfdata

• the web user interface.

2.1.3 Support

Community Support

You can find help, news and security alerts on the opm-users mailing list :

https://groups.google.com/forum/?hl=fr#!forum/opm-users

You can also join directly the developer team on the #opm channel of the freenode IRC network

To report an issue, please use the bug tracking system in the github project page: https://github.com/opmdg/

2.1. General 5

https://github.com/OPMDG/check_pgactivity
https://groups.google.com/forum/?hl=fr#!forum/opm-users
https://github.com/opmdg/

Open PostgreSQL Monitoring Documentation, Release 2.4

Commercial Support

DALIBO, as the main sponsor of the project, can provide enterprise-grade support services for both PostgreSQL and
OPM. See http://www.dalibo.com for more details.

2.2 OPM Core

2.2.1 Installation

Requirements

To install OPM, you need a 9.3 or more PostgreSQL cluster, standard compiling tools and Nagios. The PostgreSQL
cluster and Nagios can be installed on the servers you want, and can be installed on the same server.

System

Install the PostgreSQL development packages of your Linux distribution if necessary (e.g. postgresql96-devel
on Red Hat, postgresql-server-dev-9.6 on Debian).

The tool pg_config is required. Distributions packages put it usually in /usr/pgsql-9.6/bin/pg_config
(Red Hat) or /usr/lib/postgresql/9.6/bin/pg_config (Debian). It may be necessary to put it in your
$PATH at least temporarily (e.g. export PATH=/usr/lib/postgresql/9.6/bin:$PATH), especially if
you have more than one version of PostgreSQL on the server.

We suppose that the repositories opm-core (https://github.com/OPMDG/opm-core) and opm-wh_nagios (https:
//github.com/OPMDG/opm-wh_nagios) are stored into /usr/local/src/opm/ (your OPM directory).

OPM core

We need to install the core of OPM first. From your opm directory, as user root:

root:/usr/local/src/opm# cd opm-core/pg
root:/usr/local/src/opm/opm-core/pg# make install

It will copy some files into the extensions directory of PostgreSQL.

Then, using a superuser role:

postgres@postgres=# CREATE DATABASE opm;
postgres@postgres=# \c opm
postgres@opm=# CREATE EXTENSION opm_core;

You’ll need to create a first OPM administrator account:

postgres@opm=# SELECT create_admin('admin1', 'agoodpassword');

This is the user you’ll need to log on the UI.

wh_nagios

To install the module “wh_nagios”, from your OPM directory as user “root”:

6 Chapter 2. Contents:

http://www.dalibo.com
https://github.com/OPMDG/opm-core
https://github.com/OPMDG/opm-wh_nagios
https://github.com/OPMDG/opm-wh_nagios

Open PostgreSQL Monitoring Documentation, Release 2.4

root:/usr/local/src/opm# cd opm-wh_nagios/pg
root:/usr/local/src/opm/wh_nagios/pg# make install

Then, using a superuser role, in your opm database:

postgres@opm=# CREATE EXTENSION hstore;
CREATE EXTENSION

postgres@opm=# CREATE EXTENSION wh_nagios;
CREATE EXTENSION

Then, you need to create a crontab that will process incoming data and dispatch them. For instance, to trigger it every
minute:

* * * * * psql -c 'SELECT wh_nagios.dispatch_record()' opm

This crontab can belong to any user, as long as it can connect to the PostgreSQL opm database with any PostgreSQL
role.

To import data into a warehouse, you need a PostgreSQL role. We recommand to create a dedicated role, for instance:

postgres@opm=# CREATE ROLE opm_dispatcher LOGIN PASSWORD 'anothergoodpassword';

You must then allow this role to import data in a warehouse, by calling public.grant_dispatch. For instance,
if the PostgreSQL role is opm and the warehouse is wh_nagios:

postgres@opm=# SELECT grant_dispatcher('wh_nagios', 'opm_dispatcher');

Nagios & nagios_dispatcher

The dispatcher nagios_dispatcher.pl aims to dispatch perfdata from Nagios files to the wh_nagios ware-
house.

nagios_dispatcher requires the DBD::Pg perl module. It is packaged in perl-DBD-Pg (Red Hat),
libdbd-pg-perl (Debian) or in the CPAN.

We’ll need first to setup Nagios to create its perfdata files that “nagios_dispatcher” will poll and consume. As root,
create the command file and destination folder:

root:~# mkdir -p /var/lib/nagios3/spool/perfdata/
root:~# chown nagios: /var/lib/nagios3/spool/perfdata/
root:~# cat <<'EOF' >> /etc/nagios3/commands.cfg
define command{

command_name process-service-perfdata-file
command_line /bin/mv /var/lib/nagios3/service-perfdata /var/lib/nagios3/spool/

→˓perfdata/service-perfdata.$TIMET$
}
define command{

command_name process-host-perfdata-file
command_line /bin/mv /var/lib/nagios3/host-perfdata /var/lib/nagios3/spool/

→˓perfdata/host-perfdata.$TIMET$
}
EOF

Then, in your Nagios main configuration file, make sure the following parameter are set accordingly:

2.2. OPM Core 7

Open PostgreSQL Monitoring Documentation, Release 2.4

process_performance_data=1
host_perfdata_file=/var/lib/nagios3/host-perfdata
service_perfdata_file=/var/lib/nagios3/service-perfdata
host_perfdata_file_processing_command=process-host-perfdata-file
service_perfdata_file_processing_command=process-service-perfdata-file
host_perfdata_file_template=DATATYPE::HOSTPERFDATA\tTIMET::$TIMET$\tHOSTNAME::
→˓$HOSTNAME$\tHOSTPERFDATA::$HOSTPERFDATA$\tHOSTCHECKCOMMAND::$HOSTCHECKCOMMAND
→˓$\tHOSTSTATE::$HOSTSTATE$\tHOSTSTATETYPE::$HOSTSTATETYPE$\tHOSTOUTPUT::$HOSTOUTPUT$
service_perfdata_file_template=DATATYPE::SERVICEPERFDATA\tTIMET::$TIMET$\tHOSTNAME::
→˓$HOSTNAME$\tSERVICEDESC::$SERVICEDESC$\tSERVICEPERFDATA::$SERVICEPERFDATA
→˓$\tSERVICECHECKCOMMAND::$SERVICECHECKCOMMAND$\tHOSTSTATE::$HOSTSTATE
→˓$\tHOSTSTATETYPE::$HOSTSTATETYPE$\tSERVICESTATE::$SERVICESTATE$\tSERVICESTATETYPE::
→˓$SERVICESTATETYPE$\tSERVICEOUTPUT::$SERVICEOUTPUT$
host_perfdata_file_mode=a
service_perfdata_file_mode=a
host_perfdata_file_processing_interval=15
service_perfdata_file_processing_interval=15

Note: If you’re using Icinga2 instead of Nagios, you need instead to:

• enable perfdata:

$ icinga2 feature enable perfdata

• configure data format in /etc/icinga2/features-enabled/perfdata.conf:

library "perfdata"
object PerfdataWriter "perfdata" {

host_perfdata_path = "/var/spool/icinga2/perfdata/host-perfdata"
service_perfdata_path = "/var/spool/icinga2/perfdata/service-perfdata"
rotation_interval = 15s
host_format_template = "DATATYPE::HOSTPERFDATA\tTIMET::$icinga.timet

→˓$\tHOSTNAME::$host.name$\tHOSTPERFDATA::$host.perfdata$\tHOSTCHECKCOMMAND::
→˓$host.check_command$\tHOSTSTATE::$host.state$\tHOSTSTATETYPE::$host.state_type$

service_format_template = "DATATYPE::SERVICEPERFDATA\tTIMET::$icinga.timet
→˓$\tHOSTNAME::$host.name$\tSERVICEDESC::$service.name$\tSERVICEPERFDATA::
→˓$service.perfdata$\tSERVICECHECKCOMMAND::$service.check_command$\tHOSTSTATE::
→˓$host.state$\tHOSTSTATETYPE::$host.state_type$\tSERVICESTATE::$service.state
→˓$\tSERVICESTATETYPE::$service.state_type$
}

Note that compared to Nagios format templates, we removed the $HOSTOUTPUT$ and $SERVICEOUTPUT$.
Icinga has a slightly different service output handling and its SERVICEOUTPUT actually mix both the equivalent
of SERVICEOUTPUT and SERVICELONGOUTPUT from Nagios format, which may break the parsing.

Icinga2 has different macros names from Nagios. For a complete list see documentation.

Note: Beware: the perfdata files can accumulate very quickly if not consumed by the nagios_dispatcher script.

Create the dispatcher configuration file:

root:~# mkdir -p /usr/local/etc/
root:~# cat <<EOF > /usr/local/etc/nagios_dispatcher.conf
daemon=1

(continues on next page)

8 Chapter 2. Contents:

http://docs.icinga.org/icinga2/latest/doc/module/icinga2/toc#!/icinga2/latest/doc/module/icinga2/chapter/monitoring-basics

Open PostgreSQL Monitoring Documentation, Release 2.4

(continued from previous page)

directory=/var/lib/nagios3/spool/perfdata/
frequency=5
db_connection_string=dbi:Pg:dbname=opm host=127.0.0.1
db_user=YOUR_USER
db_password=YOUR_PASS
debug=0
syslog=1
hostname_filter = /^$/ # Empty hostname. Never happens
service_filter = /^$/ # Empty service
label_filter = /^$/ # Empty label
EOF

root:~# chown nagios /usr/local/etc/nagios_dispatcher.conf

Note: With our previous examples, db_user would’ve been set to opm_dispatcher and db_password should
be set to anothergoodpassword. If you use Icinga2, directory must be set to /var/spool/icinga2/
perfdata/ (Icinga2 default

directory for perfdata).

Install the nagios_dispatcher.pl file into /usr/local/bin/

root:~# cp /usr/local/src/opm/wh_nagios/bin/nagios_dispatcher.pl /usr/local/bin

You can test that it works using the command line (you may have to set daemon=0):

/usr/local/bin/nagios_dispatcher.pl --verbose -c /usr/local/etc/nagios_dispatcher.conf

The files in the Nagios perfdata directory must disappear one by one.

If your operating system uses systemd

In nagios_dispatcher.conf you must set daemon to 0 and modify the connection string. The full file be-
comes:

daemon=0
directory=/var/lib/nagios3/spool/perfdata/
frequency=5
db_connection_string=dbi:Pg:dbname=opm;host=127.0.0.1
db_user=YOUR_USER
db_password=YOUR_PASS
debug=0
syslog=1
hostname_filter = /^$/ # Empty hostname. Never happens
service_filter = /^$/ # Empty service
label_filter = /^$/ # Empty label

Create the file /etc/systemd/system/nagios_dispatcher.service with the following content:

[Unit]
Description=Nagios Dispatcher Service
After=network.target

[Service]
Type=simple

(continues on next page)

2.2. OPM Core 9

Open PostgreSQL Monitoring Documentation, Release 2.4

(continued from previous page)

User=nagios
ExecStart=/usr/local/bin/nagios_dispatcher.pl -c /usr/local/etc/nagios_dispatcher.conf
Restart=on-abort

[Install]
WantedBy=multi-user.target

Now enable and start the service:

systemctl enable nagios_dispatcher
systemctl start nagios_dispatcher

Check that the nagios_dispatcher process shows up in the process list.

If your operating system uses inittab

Add the following line at the end of the /etc/inittab file:

d1:23:respawn:/usr/bin/perl -w /usr/local/bin/nagios_dispatcher.pl --daemon --config /
→˓usr/local/etc/nagios_dispatcher.conf

and reload it:

root:~# init q

If your operating system uses upstart

Create the file /etc/init/nagios_dispatcher.conf, with the following content:

This service maintains nagios_dispatcher

start on stopped rc RUNLEVEL=[2345]
stop on starting runlevel [016]

respawn
exec /usr/local/bin/nagios_dispatcher.pl -c /usr/local/etc/nagios_dispatcher.conf

and start the job:

root:~# initctl start nagios_dispatcher

User interface

The default user interface is based on the web framework Mojolicious. You need to install:

• Perl (5.10 or above)

• Mojolicious (4.63 or above, less than 5.0 !)

• Mojolicious::Plugin::I18N (version 0.9)

• DBD::Pg perl module

• PostgreSQL (9.3 or above)

• A CGI/Perl webserver

You can install “Mojolicious” with your Linux distribution package system if old enough packages of Mojolicious are
available.

10 Chapter 2. Contents:

http://www.mojolicio.us/

Open PostgreSQL Monitoring Documentation, Release 2.4

Another option is from CPAN:

curl -L cpanmin.us | perl - Mojolicious@4.99
curl -L cpanmin.us | perl - Mojolicious::Plugin::I18N@0.9
curl -L cpanmin.us | perl - DBI
curl -L cpanmin.us | perl - DBD::Pg

Alternatively, you can download the required archives and install them manually:

wget http://backpan.perl.org/authors/id/S/SR/SRI/Mojolicious-4.99.tar.gz
tar xzf Mojolicious-4.99.tar.gz
cd Mojolicious-4.99
perl Makefile.PL
make
sudo make install
cd ..
wget http://backpan.perl.org/authors/id/S/SH/SHARIFULN/Mojolicious-Plugin-I18N-0.9.
→˓tar.gz
tar xzf Mojolicious-Plugin-I18N-0.9.tar.gz
cd Mojolicious-Plugin-I18N-0.9
make
sudo make install

To install the UI plugin wh_nagios (or any other UI plugin), from your opm directory as user root:

root:/usr/local/src/opm# cd opm-core/ui/modules
root:/usr/local/src/opm/opm-core/ui/modules# ln -s /usr/local/src/opm/opm-wh_nagios/
→˓ui wh_nagios

Then, on your OPM database side, you need to create another user for the UI:

postgres@opm=# CREATE USER opmui WITH ENCRYPTED PASSWORD 'yetanothergoodpassword';
postgres@opm=# SELECT * from grant_appli('opmui');

Finally, in /usr/local/src/opm/opm-core/ui, copy the opm.conf-dist file to opm.conf, and edit it to suit
you needs, for instance:

{
...
"database" : {

"dbname" : "opm",
"host" : "127.0.0.1",
"port" : "5432",
"user" : "opmui",
"password" : "opmui"

},
...
"plugins" : ["wh_nagios"]

}

This user is only needed for the connection between the UI and the database. You only have to use it in the
opm.conf file

To test the web user interface quickly, you can use either morbo or hypnotoad, both installed with Mojolicious.
Example with Morbo:

user:/usr/local/src/opm/opm-core/ui/opm$ morbo ./script/opm
[Fri Nov 29 12:12:52 2013] [debug] Helper "url_for" already exists, replacing.

(continues on next page)

2.2. OPM Core 11

Open PostgreSQL Monitoring Documentation, Release 2.4

(continued from previous page)

[Fri Nov 29 12:12:52 2013] [debug] Reading config file "/home/ioguix/git/opm/ui/opm/
→˓opm.conf".
[Fri Nov 29 12:12:53 2013] [info] Listening at "http://*:3000".
Server available at http://127.0.0.1:3000.

• Alternativeley, this example uses hypnotoad, which suits production better:

user:/usr/local/src/opm-core/ui/opm$ hypnotoad -f ./script/opm

Note: Removing “-f” makes it daemonize.

Note: If you want to change default listen port when using hypnotoad, you can edit the opm.conf file to specify listen
port or any hypnotoad related parameter, like this:

"hypnotoad" : {
"listen" : ["http://*:6666"],
"worker" : 10

},
...,

• To configure nginx to forward requests to a hypnotoad application server:

upstream hypnotoad {
server 127.0.0.1:8080;

}

server {
listen 80;

location / {
proxy_pass http://hypnotoad;
proxy_set_header Host $host;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto "http";

}
}

Note: You should ensure that hypnotoad starts on boot, e.g. in /etc/rc.local:

su - www-data -c 'hypnotoad /var/www/opm-core/ui/script/opm'

If you want to use Apache, here is a quick configuration sample using CGI:

<VirtualHost *:80>
ServerAdmin webmaster@example.com
ServerName opm.example.com
DocumentRoot /var/www/opm/public/

<Directory /var/www/opm/public/>
AllowOverride None

(continues on next page)

12 Chapter 2. Contents:

Open PostgreSQL Monitoring Documentation, Release 2.4

(continued from previous page)

Order allow,deny
allow from all
IndexIgnore *

RewriteEngine On
RewriteBase /
RewriteRule ^$ opm.cgi [L]
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule ^(.*)$ opm.cgi/$1 [L]

</Directory>

ScriptAlias /opm.cgi /var/www/opm/script/opm
<Directory /var/www/opm/script/>

AddHandler cgi-script .cgi
Options +ExecCGI
AllowOverride None
Order allow,deny
allow from all
SetEnv MOJO_MODE production
SetEnv MOJO_MAX_MESSAGE_SIZE 4294967296

</Directory>

ErrorLog ${APACHE_LOG_DIR}/opm.log
Possible values include: debug, info, notice, warn, error, crit,
alert, emerg.
LogLevel warn

CustomLog ${APACHE_LOG_DIR}/opm.log combined
</VirtualHost>

(assuming that the directory /usr/local/src/opm/opm-core/ui has been symlinked to /var/www/opm).

For a complete list and specifications on supported http servers, please check the Mojolicious official documentation.

2.3 Probes

2.3.1 check_pgactivity

check_pgactivity - PostgreSQL plugin for Nagios

Contents

• check_pgactivity

– SYNOPSIS

– DESCRIPTION

– THRESHOLDS

– CONNECTIONS

– SERVICES

2.3. Probes 13

http://mojolicio.us/perldoc/Mojolicious/Guides/Cookbook#DEPLOYMENT

Open PostgreSQL Monitoring Documentation, Release 2.4

– EXAMPLES

– VERSION

– LICENSING

– AUTHORS

SYNOPSIS

check_pgactivity {-w|--warning THRESHOLD} {-c|--critical THRESHOLD} [-s|--service
→˓SERVICE] [-h|--host HOST] [-U|--username ROLE] [-p|--port PORT] [-d|--dbname
→˓DATABASE] [-S|--dbservice SERVICE_NAME] [-P|--psql PATH] [--debug] [--status-file
→˓FILE] [--path PATH] [-t|--timemout TIMEOUT]
check_pgactivity [-l|--list]
check_pgactivity [--help]

DESCRIPTION

check_pgactivity is designed to monitor PostgreSQL clusters from Nagios. It offers many options to measure and
monitor useful performance metrics.

-s, –service SERVICE

The Nagios service to run. See section SERVICES for a description of available services or use --list
for a short service and description list.

-h, –host HOST

Database server host or socket directory (default: $PGHOST or “localhost”)

See section CONNECTIONS for more informations.

-U, –username ROLE

Database user name (default: $PGUSER or “postgres”).

See section CONNECTIONS for more informations.

-p, –port PORT

Database server port (default: $PGPORT or “5432”).

See section CONNECTIONS for more informations.

-d, –dbname DATABASE

Database name to connect to (default: $PGDATABASE or “template1”).

WARNING! This is not necessarily one of the database that will be checked. See --dbinclude and
--dbexclude .

See section CONNECTIONS for more informations.

-S, –dbservice SERVICE_NAME

The connection service name from pg_service.conf to use.

See section CONNECTIONS for more informations.

–dbexclude REGEXP

14 Chapter 2. Contents:

Open PostgreSQL Monitoring Documentation, Release 2.4

Some services automatically check all the databases of your cluster (note: that does not mean they always
need to connect on all of them to check them though). --dbexclude excludes any database whose
name matches the given Perl regular expression. Repeat this option as many time as needed.

See --dbinclude as well. If a database match both dbexclude and dbinclude arguments, it is excluded.

–dbinclude REGEXP

Some services automatically check all the databases of your cluster (note: that does not imply that they
always need to connect to all of them though). Some always exclude the ‘postgres’ database and templates.
--dbinclude checks ONLYdatabases whose names match the given Perl regular expression. Repeat
this option as many time as needed.

See --dbexclude as well. If a database match both dbexclude and dbinclude arguments, it is excluded.

-w, –warning THRESHOLD

The Warning threshold.

-c, –critical THRESHOLD

The Critical threshold.

-F, –format OUTPUT_FORMAT

The output format. Supported output are: binary, debug, human, nagios and nagios_strict.

Using the binary format, the results are written in a binary file (using perl module Storable) given
in argument --output. If no output is given, defaults to file check_pgactivity.out in the same
directory as the script.

The nagios_strict format is equivalent to the nagios format. The only difference is that it enforces
the unit follow the strict Nagios specs: B, c, s or %. Any unit absent from this list is dropped (Bps, Tps,
etc).

–tmpdir DIRECTORY

Path to a directory where the script can create temporary files. The script relies on the system default
temporary directory if possible.

-P, –psql FILE

Path to the psql executable (default: “psql”).

–status-file PATH

Path to the file where service status information is kept between successive calls. Default is to save
check_pgactivity.data in the same directory as the script.

–dump-status-file

Dump the content of the status file and exit. This is useful for debugging purpose.

–dump-bin-file [PATH]

Dump the content of the given binary file previously created using --format binary. If no path is
given, defaults to file check_pgactivity.out in the same directory as the script.

-t, –timeout TIMEOUT

Timeout (default: “30s”), as raw (in seconds) or as an interval. This timeout will be used as
statement_timeout for psql and URL timeout for minor_version service.

-l, –list

List available services.

2.3. Probes 15

Open PostgreSQL Monitoring Documentation, Release 2.4

-V, –version

Print version and exit.

–debug

Print some debug messages.

-?, –help

Show this help page.

THRESHOLDS

THRESHOLDS provided as warning and critical values can be raw numbers, percentages, intervals or sizes. Each
available service supports one or more formats (eg. a size and a percentage).

Percentage

If THRESHOLD is a percentage, the value should end with a ‘%’ (no space). For instance: 95%.

Interval

If THRESHOLD is an interval, the following units are accepted (not case sensitive): s (second), m
(minute), h (hour), d (day). You can use more than one unit per given value. If not set, the last unit
is in seconds. For instance: “1h 55m 6” = “1h55m6s”.

Size

If THRESHOLD is a size, the following units are accepted (not case sensitive): b (Byte), k (KB), m (MB),
g (GB), t (TB), p (PB), e (EB) or Z (ZB). Only integers are accepted. Eg. 1.5MB will be refused, use
1500kB.

The factor between units is 1024 bytes. Eg. 1g = 1G = 1024*1024*1024.

CONNECTIONS

check_pgactivity allows two different connection specifications: by service or by specifying values for host, user, port,
and database. Some services can run on multiple hosts, or needs to connect to multiple hosts.

You might specify one of the parameters below to connect to your PostgreSQL instance. If you don’t, no connection
parameters are given to psql: connection relies on binary defaults and environment.

The format for connection parameters is:

Parameter --dbservice SERVICE_NAME

Define a new host using the given service. Multiple hosts can be defined by listing multiple services
separated by a comma. Eg.

--dbservice service1,service2

Parameters --host HOST, --port PORT, --user ROLE or --dbname DATABASE

One parameter is enough to define a new host. Usual environment variables (PGHOST, PGPORT, PG-
DATABASE, PGUSER, PGSERVICE) or default values are used for missing parameters.

If multiple values are given, define as many host as maximum given values.

Values are associated by position. Eg.:

16 Chapter 2. Contents:

Open PostgreSQL Monitoring Documentation, Release 2.4

--host h1,h2 --port 5432,5433

Means “host=h1 port=5432” and “host=h2 port=5433”.

If the number of values is different between parameters, any host missing a parameter will use the first
given value for this parameter. Eg.:

--host h1,h2 --port 5433

Means: “host=h1 port=5433” and “host=h2 port=5433”.

Services are defined first

For instance:

--dbservice s1 --host h1 --port 5433

means: use “service=s1” and “host=h1 port=5433” in this order. If the service supports only one host, the
second host is ignored.

Mutual exclusion between both methods

You can not overwrite services connections variables with parameters --host HOST, --port PORT,
--user ROLE or --dbname DATABASE

SERVICES

Descriptions and parameters of available services.

archive_folder

Check if all archived WALs exist between the oldest and the latest WAL in the archive folder and make
sure they are 16MB. The given folder must have archived files from ONE cluster. The version of Post-
greSQL that created the archives is only checked on the last one, for performance consideration.

This service requires the argument --path on the command line to specify the archive folder path to
check. Obviously, it must have access to this folder at the filesystem level: you may have to execute it on
the archiving server rather than on the PostgreSQL instance.

The optional argument --suffix defines the suffix of your archived WALs; this is useful for compressed
WALs (eg. .gz, .bz2, . . .). Default is no suffix.

This service needs to read the header of one of the archives to define how many segments a WAL owns.
Check_pgactivity automatically handles files with extensions .gz, .bz2, .xz, .zip or .7z using the following
commands:

gzip -dc
bzip2 -dc
xz -dc
unzip -qqp
7z x -so

If needed, provide your own command that writes the uncompressed file to standard output with the
--unarchiver argument.

Optional argument --ignore-wal-size skips the WAL size check. This is useful if your archived
WALs are compressed and check_pgactivity is unable to guess the original size. Here are the commands
check_pgactivity uses to guess the original size of .gz, .xz or .zip files:

2.3. Probes 17

Open PostgreSQL Monitoring Documentation, Release 2.4

gzip -ql
xz -ql
unzip -qql

Default behaviour is to check the WALs size.

Perfdata contains the number of archived WALs and the age of the most recent one.

Critical and Warning define the max age of the latest archived WAL as an interval (eg. 5m or 300s).

Required privileges: unprivileged role; the system user needs read access to archived WAL files.

Sample commands:

check_pgactivity -s archive_folder --path /path/to/archives -w 15m -c 30m
check_pgactivity -s archive_folder --path /path/to/archives --suffix .gz -w
→˓15m -c 30m
check_pgactivity -s archive_folder --path /path/to/archives --ignore-wal-
→˓size --suffix .bz2 -w 15m -c 30m
check_pgactivity -s archive_folder --path /path/to/archives --unarchiver
→˓"unrar p" --ignore-wal-size --suffix .rar -w 15m -c 30m

archiver (8.1+)

Check if the archiver is working properly and the number of WAL files ready to archive.

Perfdata returns the number of WAL files waiting to be archived.

Critical and Warning thresholds are optional. They apply on the number of files waiting to be archived.
They only accept a raw number of files.

Whatever the given threshold, a critical alert is raised if the archiver process did not archive the oldest
waiting WAL to be archived since last call.

Required privileges: unprivileged role (10+); superuser (<10).

autovacuum (8.1+)

Check the autovacuum activity on the cluster.

Perfdata contains the age of oldest running autovacuum and the number of workers by type (VACUUM,
VACUUM ANALYZE, ANALYZE, VACUUM FREEZE).

Thresholds, if any, are ignored.

Required privileges: unprivileged role.

backends (all)

Check the total number of connections in the PostgreSQL cluster.

Perfdata contains the number of connections per database.

Critical and Warning thresholds accept either a raw number or a percentage (eg. 80%). When a threshold
is a percentage, it is compared to the difference between the cluster parameters max_connections and
superuser_reserved_connections.

Required privileges: an unprivileged user only sees its own queries; a pg_monitor (10+) or superuser
(<10) role is required to see all queries.

backends_status (8.2+)

Check the status of all backends. Depending on your PostgreSQL version, statuses are: idle, idle in
transaction, idle in transaction (aborted)(>=9.0 only), fastpath function
call, active, waiting for lock, undefined, disabled and insufficient

18 Chapter 2. Contents:

Open PostgreSQL Monitoring Documentation, Release 2.4

privilege. insufficient privilege appears when you are not allowed to see the statuses of
other connections.

This service supports the argument --exclude REGEX to exclude queries matching the given regular
expression.

You can use multiple --exclude REGEX arguments.

Critical and Warning thresholds are optional. They accept a list of ‘status_label=value’ separated by
a comma. Available labels are idle, idle_xact, aborted_xact, fastpath, active and
waiting. Values are raw numbers or time units and empty lists are forbidden. Here is an example:

-w 'waiting=5,idle_xact=10' -c 'waiting=20,idle_xact=30,active=1d'

Perfdata contains the number of backends for each status and the oldest one for each of them, for 8.2+.

Note that the number of backends reported in Nagios message includesexcluded backends.

Required privileges: an unprivileged user only sees its own queries; a pg_monitor (10+) or superuser
(<10) role is required to see all queries.

backup_label_age (8.1+)

Check the age of the backup label file.

Perfdata returns the age of the backup_label file, -1 if not present.

Critical and Warning thresholds only accept an interval (eg. 1h30m25s).

Required privileges: unprivileged role (9.3+); superuser (<9.3)

bgwriter (8.3+)

Check the percentage of pages written by backends since last check.

This service uses the status file (see --status-file parameter).

Perfdata contains the ratio per second for each pg_stat_bgwriter counter since last execution. Units
Nps for checkpoints, max written clean and fsyncs are the number of “events” per second.

Critical and Warning thresholds are optional. If set, they only accept a percentage.

Required privileges: unprivileged role.

btree_bloat

Estimate bloat on B-tree indexes.

Warning and critical thresholds accept a comma-separated list of either raw number(for a size), size (eg.
125M) or percentage. The thresholds apply to bloat size, not object size. If a percentage is given, the
threshold will apply to the bloat size compared to the total index size. If multiple threshold values are
passed, check_pgactivity will choose the largest (bloat size) value.

This service supports both --dbexclude and --dbinclude parameters. The ‘postgres’ database and
templates are always excluded.

It also supports a --exclude REGEX parameter to exclude relations matching a regular expression.
The regular expression applies to “database.schema_name.relation_name”. This enables you to filter
either on a relation name for all schemas and databases, on a qualified named relation (schema + relation)
for all databases or on a qualified named relation in only one database.

You can use multiple --exclude REGEX parameters.

Perfdata will return the number of indexes of concern, by warning and critical threshold per database.

2.3. Probes 19

Open PostgreSQL Monitoring Documentation, Release 2.4

A list of the bloated indexes will be returned after the perfdata. This list contains the fully qualified bloated
index name, the estimated bloat size, the index size and the bloat percentage.

Required privileges: superuser (<10) able to log in all databases, or at least those in --dbinclude;
superuser (<10); on PostgreSQL 10+, a user with the role pg_monitor suffices, provided that you grant
SELECT on the system table pg_statistic to the pg_monitor role, in each database of the cluster: GRANT
SELECT ON pg_statistic TO pg_monitor;

commit_ratio (all)

Check the commit and rollback rate per second since last call.

This service uses the status file (see –status-file parameter).

Perfdata contains the commit rate, rollback rate, transaction rate and rollback ratio for each database since
last call.

Critical and Warning thresholds are optional. They accept a list of comma separated ‘label=value’. Avail-
able labels are rollbacks, rollback_rateand rollback_ratio, which will be compared to the number of
rollbacks, the rollback rate and the rollback ratio of each database. Warning or critical will be raised if the
reported value is greater than rollbacks, rollback_rateor rollback_ratio.

Required privileges: unprivileged role.

configuration (8.0+)

Check the most important settings.

Warning and Critical thresholds are ignored.

Specific parameters are : --work_mem, --maintenance_work_mem,
--shared_buffers,--wal_buffers, --checkpoint_segments,
--effective_cache_size, --no_check_autovacuum, --no_check_fsync,
--no_check_enable, --no_check_track_counts.

Required privileges: unprivileged role.

connection (all)

Perform a simple connection test.

No perfdata is returned.

This service ignores critical and warning arguments.

Required privileges: unprivileged role.

custom_query (all)

Perform the given user query.

Specify the query with --query. The first column will be used to perform the test for the status if
warning and critical are provided.

The warning and critical arguments are optional. They can be of format integer (default), size or time
depending on the --type argument. Warning and Critical will be raised if they are greater than the first
column, or less if the --reverse option is used.

All other columns will be used to generate the perfdata. Each field name is used as the name of the
perfdata. The field value must contain your perfdata value and its unit appended to it. You can add as
many fields as needed. Eg.:

SELECT pg_database_size('postgres'),
pg_database_size('postgres')||'B' AS db_size

20 Chapter 2. Contents:

Open PostgreSQL Monitoring Documentation, Release 2.4

Required privileges: unprivileged role (depends on the query).

database_size (8.1+)

Check the variation of database sizes, and return the size of every databases.

This service uses the status file (see --status-file parameter).

Perfdata contains the size of each database.

Critical and Warning thresholds accept either a raw number, a percentage, or a size (eg. 2.5G). They are
applied on the size difference for each database since the last execution. The aim is to detect unexpected
database size variation.

This service supports both --dbexclude and --dbinclude parameters.

Required privileges: unprivileged role.

hit_ratio (all)

Check the cache hit ratio on the cluster.

This service uses the status file (see --status-file parameter).

Perfdata returns the cache hit ratio per database. Template databases and databases that do not allow
connections will not be checked, nor will the databases which have never been accessed.

Critical and Warning thresholds are optional. They only accept a percentage.

This service supports both --dbexclude and --dbinclude parameters.

Required privileges: unprivileged role.

hot_standby_delta (9.0)

Check the data delta between a cluster and its hot standbys.

You must give the connection parameters for two or more clusters.

Perfdata returns the data delta in bytes between the master and each hot standby cluster listed.

Critical and Warning thresholds are optional. They can take one or two values separated by a comma. If
only one value given, it applies to both received and replayed data. If two values are given, the first one
applies to received data, the second one to replayed ones. These thresholds only accept a size (eg. 2.5G).

This service raises a Critical if it doesn’t find exactly ONE valid master cluster (ie. critical when 0 or 2
and more masters).

Required privileges: unprivileged role.

is_hot_standby (9.0+)

Checks if the cluster is in recovery and accepts read only queries.

This service ignores critical and warning arguments.

No perfdata is returned.

Required privileges: unprivileged role.

is_master (all)

Checks if the cluster accepts read and/or write queries. This state is reported as “in production” by
pg_controldata.

This service ignores critical and warning arguments.

No perfdata is returned.

2.3. Probes 21

Open PostgreSQL Monitoring Documentation, Release 2.4

Required privileges: unprivileged role.

invalid_indexes

Check if there is there are invalid indexes in a database.

A critical alert is raised if an invalid index is detected.

This service supports both --dbexclude and --dbinclude parameters. The ‘postgres’ database and
templates are always excluded.

This service supports a --exclude REGEX parameter to exclude indexes matching a regular expres-
sion. The regular expression applies to “database.schema_name.index_name”. This enables you to filter
either on a relation name for all schemas and databases, on a qualified named index (schema + index) for
all databases or on a qualified named index in only one database.

You can use multiple --exclude REGEX parameters.

Perfdata will return the number of invalid indexes per database.

A list of invalid indexes will be returned after the perfdata. This list contains the fully qualified index
name. If excluded index is set, the number of exclude indexes is returned.

Required privileges: unprivileged role able to log in all databases.

is_replay_paused (9.1+)

Checks if the replication is paused. The service will return UNKNOWN if executed on a master server.

Thresholds are optional. They must be specified as interval. OK will always be returned if the standby is
not paused, even if replication delta time hits the thresholds.

Critical or warning are raised if last reported replayed timestamp is greater than given threshold AND
some data received from the master are not applied yet. OK will always be returned if the standby
is paused, or if the standby has already replayed everything from master and until some write activity
happens on the master.

Perfdata returned: * paused status (0 no, 1 yes, NaN if master) * lag time (in second) * data delta with
master (0 no, 1 yes)

Required privileges: unprivileged role.

last_analyze (8.2+)

Check on each databases that the oldest analyze (from autovacuum or not) is not older than the given
threshold.

This service uses the status file (see --status-file parameter) with PostgreSQL 9.1+.

Perfdata returns oldest analyze per database in seconds. With PostgreSQL 9.1+, the number of
[auto]analyses per database since last call is also returned.

Critical and Warning thresholds only accept an interval (eg. 1h30m25s) and apply to the oldest execution
of analyse.

This service supports both --dbexclude and --dbinclude parameters. The ‘postgres’ database and
templates are always excluded.

Required privileges: unprivileged role able to log in all databases.

last_vacuum (8.2+)

Check that the oldest vacuum (from autovacuum or otherwise) in each database in the cluster is not older
than the given threshold.

This service uses the status file (see --status-file parameter) with PostgreSQL 9.1+.

22 Chapter 2. Contents:

Open PostgreSQL Monitoring Documentation, Release 2.4

Perfdata returns oldest vacuum per database in seconds. With PostgreSQL 9.1+, it also returns the number
of [auto]vacuums per database since last execution.

Critical and Warning thresholds only accept an interval (eg. 1h30m25s) and apply to the oldest vacuum.

This service supports both --dbexclude and --dbinclude parameters. The ‘postgres’ database and
templates are always excluded.

Required privileges: unprivileged role able to log in all databases.

locks (all)

Check the number of locks on the hosts.

Perfdata returns the number of locks, by type.

Critical and Warning thresholds accept either a raw number of locks or a percentage. For percentage, it is
computed using the following limits for 7.4 to 8.1:

max_locks_per_transaction * max_connections

for 8.2+:

max_locks_per_transaction * (max_connections + max_prepared_transactions)

for 9.1+, regarding lockmode :

max_locks_per_transaction * (max_connections + max_prepared_transactions)
or max_pred_locks_per_transaction * (max_connections + max_prepared_
→˓transactions)

Required privileges: unprivileged role.

longest_query (all)

Check the longest running query in the cluster.

Perfdata contains the max/avg/min running time and the number of queries per database.

Critical and Warning thresholds only accept an interval.

This service supports both --dbexclude and --dbinclude parameters.

It also supports argument --exclude REGEX to exclude queries matching the given regular expression
from the check.

Above 9.0, it also supports --exclude REGEX to filter out application_name.

You can use multiple --exclude REGEX parameters.

Required privileges: an unprivileged role only checks its own queries; a pg_monitor (10+) or superuser
(<10) role is required to check all queries.

max_freeze_age (all)

Checks oldest database by transaction age.

Critical and Warning thresholds are optional. They accept either a raw number or percentage for Post-
greSQL 8.2 and more. If percentage is given, the thresholds are computed based on the “autovac-
uum_freeze_max_age” parameter. 100% means that some table(s) reached the maximum age and will
trigger an autovacuum freeze. Percentage thresholds should therefore be greater than 100%.

Even with no threshold, this service will raise a critical alert if a database has a negative age.

Perfdata returns the age of each database.

2.3. Probes 23

Open PostgreSQL Monitoring Documentation, Release 2.4

This service supports both --dbexclude and --dbinclude parameters.

Required privileges: unprivileged role.

minor_version (all)

Check if the cluster is running the most recent minor version of PostgreSQL.

Latest versions of PostgreSQL can be fetched from PostgreSQL official website if check_pgactivity has
access to it, or must be given as a parameter.

Without --critical or --warning parameters, this service attempts to fetch the latest version num-
bers online. A critical alert is raised if the minor version is not the most recent.

You can optionally set the path to your prefered retrieval tool using the --path parameter (eg. --path
'/usr/bin/wget'). Supported programs are: GET, wget, curl, fetch, lynx, links, links2.

If you do not want to (or cannot) query the PostgreSQL website, provide the expected versions using
either --warning OR --critical, depending on which return value you want to raise.

The given string must contain one or more MINOR versions separated by anything but a ‘.’. For instance,
the following parameters are all equivalent:

--critical "10.1 9.6.6 9.5.10 9.4.15 9.3.20 9.2.24 9.1.24 9.0.23 8.4.22"
--critical "10.1, 9.6.6, 9.5.10, 9.4.15, 9.3.20, 9.2.24, 9.1.24, 9.0.23, 8.4.
→˓22"
--critical "10.1,9.6.6,9.5.10,9.4.15,9.3.20,9.2.24,9.1.24,9.0.23,8.4.22"
--critical "10.1/9.6.6/9.5.10/9.4.15/9.3.20/9.2.24/9.1.24/9.0.23/8.4.22"

Any other value than 3 numbers separated by dots (before version 10.x) or 2 numbers separated by dots
(version 10 and above) will be ignored. If the running PostgreSQL major version is not found, the service
raises an unknown status.

Perfdata returns the numerical version of PostgreSQL.

Required privileges: unprivileged role; access to http://www.postgresql.org required to download version
numbers.

oldest_2pc (8.1+)

Check the oldest two-phase commit transaction (aka. prepared transaction) in the cluster.

Perfdata contains the max/avg age time and the number of prepared transactions per databases.

Critical and Warning thresholds only accept an interval.

Required privileges: unprivileged role.

oldest_idlexact (8.3+)

Check the oldest idle transaction.

Perfdata contains the max/avg age and the number of idle transactions per databases.

Critical and Warning thresholds only accept an interval.

This service supports both --dbexclude and --dbinclude parameters.

Above 9.2, it supports --exclude to filter out connections. Eg., to filter out pg_dump and pg_dumpall,
set this to ‘pg_dump,pg_dumpall’.

Required privileges: an unprivileged role checks only its own queries; a pg_monitor (10+) or superuser
(<10) role is required to check all queries.

pg_dump_backup

24 Chapter 2. Contents:

http://www.postgresql.org

Open PostgreSQL Monitoring Documentation, Release 2.4

Check the age and size of backups.

This service uses the status file (see --status-file parameter).

The --path argument contains the location to the backup folder. The supported format is a glob pattern
matching every folder or file that you need to check. If appropriate, the probe should be run as a user with
sufficient privileges to check for the existence of files.

The --pattern is required, and must contain a regular expression matching the backup file name,
extracting the database name from the first matching group. For example, the pattern “(w+)-d+.dump”
can be used to match dumps of the form:

mydb-20150803.dump
otherdb-20150803.dump
mydb-20150806.dump
otherdb-20150806.dump
mydb-20150807.dump

Optionally, a --global-pattern option can be supplied to check for an additional global file.

Tip [For compatibility with pg_back, you should use] --path ‘/path/*{dump,sql}’ --pattern
‘(w+)_[0-9-_]+.dump’ --global-pattern ‘pg_global_[0-9-_]+.sql’

The --critical and --warning thresholds are optional. They accept a list of ‘metric=value’ sep-
arated by a comma. Available metrics are oldest and newest, respectively the age of the oldest and
newest backups, and size, which must be the maximum variation of size since the last check, expressed
as a size or a percentage. mindeltasize, expressed in B, is the minimum variation of size needed to
raise an alert.

This service supports the --dbinclude and --dbexclude arguments, to respectively test for the
presence of include or exclude files.

The argument --exclude enables you to exclude files younger than an interval. This is useful to ignore
files from a backup in progress. Eg., if your backup process takes 2h, set this to ‘125m’.

Perfdata returns the age of the oldest and newest backups, as well as the size of the newest backups.

Required privileges: unprivileged role; the system user needs read access on the directory containing the
dumps (but not on the dumps themselves).

pga_version

Check if this script is running the given version of check_pgactivity. You must provide the expected
version using either --warning OR --critical.

No perfdata is returned.

Required privileges: none.

pgdata_permission (8.2+)

Check that the instance data directory rights are 700, and belongs to the system user currently running
postgresql.

The check on rights works on all Unix systems.

Checking the user only works on Linux systems (it uses /proc to avoid dependencies). Before 9.3, you
need to provide the expected owner using the --uid argument, or the owner will not be checked.

Required privileges: <11:superuser v11: user with pg_monitor or pg_read_all_setting

The system user must also be able to read the folder containing PGDATA: the service has to be executed
locally on the monitored server.

replication_slots (9.4+)

2.3. Probes 25

Open PostgreSQL Monitoring Documentation, Release 2.4

Check the number of WAL files and pg_replslot files retained by each replication slots.

Perfdata returns the number of WAL and pg_replslot files that each replication slot has to keep. This
service needs superuser privileges since v10 to obtain pg_replslot files. Unless replslot_files will be at 0.

Critical and Warning thresholds are optional. They accept either a raw number (for backward compati-
bility, only wal threshold will be used) or a list ‘wal=value’ and ‘replslot=value’. Respectively number of
kept wal files or number of files in pg_replslot for each slot.

Required privileges: <10: unprivileged role v10: unprivileged role, or superuser to monitor logical repli-
cation v11: unpriviledged user with GRANT EXECUTE on function pg_ls_dir(text)

Here is an example:

-w 'wal=50,replslot=20' -c 'wal=100,replslot=40'

settings (9.0+)

Check if the current settings have changed since they were stored in the service file.

The “known” settings are recorded during the very first call of the service. To update the known settings
after a configuration change, call this service again with the argument --save.

No perfdata.

Critical and Warning thresholds are ignored.

A Critical is raised if at least one parameter changed.

Required privileges: unprivileged role.

sequences_exhausted (7.4+)

Check all sequences assigned to a column (the smallserial, serial and bigserial types), and raise an alarm
if the column or sequences gets too close to the maximum value.

Perfdata returns the sequences that trigger the alert.

This service supports both --dbexclude and --dbinclude parameters. The ‘postgres’ database and
templates are always excluded.

Critical and Warning thresholds accept a percentage of the sequence filled.

Required privileges: unprivileged role able to log in all databases

stat_snapshot_age (9.5+)

Check the age of the statistics snapshot (statistics collector’s statistics). This probe helps to detect a frozen
stats collector process.

Perfdata returns the statistics snapshot age.

Critical and Warning thresholds accept a raw number of seconds.

Required privileges: unprivileged role.

streaming_delta (9.1+)

Check the data delta between a cluster and its standbys in streaming replication.

Optional argument --slave allows you to specify some slaves that MUST be connected. This argument
can be used as many times as desired to check multiple slave connections, or you can specify multiple
slaves connections at one time, using comma separated values. Both methods can be used in a single call.
The provided values must be of the form “APPLICATION_NAME IP”. Both following examples will
check for the presence of two slaves:

26 Chapter 2. Contents:

Open PostgreSQL Monitoring Documentation, Release 2.4

--slave 'slave1 192.168.1.11' --slave 'slave2 192.168.1.12'
--slave 'slave1 192.168.1.11','slave2 192.168.1.12'

This service supports a --exclude REGEX parameter to exclude every result matching a regular ex-
pression on application_name or IP address fields.

You can use multiple --exclude REGEX parameters.

Perfdata returns the data delta in bytes between the master and every standbies found, the number of
standbies connected and the number of excluded standbies.

Critical and Warning thresholds are optional. They can take one or two values separated by a comma. If
only one value is supplied, it applies to both flushed and replayed data. If two values are supplied, the
first one applies to flushed data, the second one to replayed data. These thresholds only accept a size (eg.
2.5G).

Required privileges: unprivileged role.

table_unlogged (9.5+)

Check if tables are changed to unlogged. In 9.5, you can switch between logged and unlogged.

Without --critical or --warning parameters, this service attempts to fetch all unlogged tables.

A critical alert is raised if an unlogged table is detected.

This service supports both --dbexclude and --dbinclude parameters. The ‘postgres’ database and
templates are always excluded.

This service supports a --exclude REGEX parameter to exclude relations matching a regular expres-
sion. The regular expression applies to “database.schema_name.relation_name”. This enables you to filter
either on a relation name for all schemas and databases, on a qualified named relation (schema + relation)
for all databases or on a qualified named relation in only one database.

You can use multiple --exclude REGEX parameters.

Perfdata will return the number of unlogged tables per database.

A list of the unlogged tables will be returned after the perfdata. This list contains the fully qualified table
name. If --exclude REGEX is set, the number of excluded tables is returned.

Required privileges: unprivileged role able to log in all databases, or at least those in --dbinclude.

table_bloat

Estimate bloat on tables.

Warning and critical thresholds accept a comma-separated list of either raw number(for a size), size (eg.
125M) or percentage. The thresholds apply to bloat size, not object size. If a percentage is given, the
threshold will apply to the bloat size compared to the table + TOAST size. If multiple threshold values
are passed, check_pgactivity will choose the largest (bloat size) value.

This service supports both --dbexclude and --dbinclude parameters. The ‘postgres’ database and
templates are always excluded.

This service supports a --exclude REGEX parameter to exclude relations matching the given regular
expression. The regular expression applies to “database.schema_name.relation_name”. This enables you
to filter either on a relation name for all schemas and databases, on a qualified named relation (schema +
relation) for all databases or on a qualified named relation in only one database.

You can use multiple --exclude REGEX parameters.

Warning: With a non-superuser role, this service can only check the tables that the given role is granted
to read!

2.3. Probes 27

Open PostgreSQL Monitoring Documentation, Release 2.4

Perfdata will return the number of tables matching the warning and critical thresholds, per database.

A list of the bloated tables will be returned after the perfdata. This list contains the fully qualified bloated
table name, the estimated bloat size, the table size and the bloat percentage.

Required privileges: superuser (<10) able to log in all databases, or at least those in --dbinclude;
superuser (<10); on PostgreSQL 10+, a user with the role pg_monitor suffices, provided that you grant
SELECT on the system table pg_statistic to the pg_monitor role, in each database of the cluster: GRANT
SELECT ON pg_statistic TO pg_monitor;

temp_files (8.1+)

Check the number and size of temp files.

This service uses the status file (see --status-file parameter) for 9.2+.

Perfdata returns the number and total size of temp files found in pgsql_tmp folders. They are aggregated
by database until 8.2, then by tablespace (see GUC temp_tablespaces).

Starting with 9.2, perfdata returns as well the number of temp files per database since last run, the total
size of temp files per database since last run and the rate at which temp files were generated.

Critical and Warning thresholds are optional. They accept either a number of file (raw value), a size (unit
is mandatory to define a size) or both values separated by a comma.

Thresholds are applied on current temp files being created AND the number/size of temp files created
since last execution.

Required privileges: <10: superuser v10: an unprivileged role is possible but it will not monitor
databases

that it cannot access, nor live temp files v11: an unprivileged role is possible but must be granted EX-
ECUTE

on functions pg_ls_dir(text), pg_read_file(text), pg_stat_file(text); the same restrictions than on v10 will
still apply

uptime (8.1+)

Returns time since postmaster start (“uptime”, from 8.1), since configuration reload (from 8.4), and since
shared memory initialization (from 10).

Please note that the uptime is unaffected when the postmaster resets all its children (for example after a
kill -9 on a process or a failure).

From 10+, the ‘time since shared memory init’ aims at detecting this situation: in fact we use the age of
the oldest non-client child process (usually checkpointer, writer or startup). This needs pg_monitor access
to read pg_stat_activity.

Critical and Warning thresholds are optional. If both are set, Critical is raised when the postmaster uptime
or the time since shared memory initialization is less than the critical threshold.

Warning is raised when the time since configuration reload is less than the warning threshold. If only a
warning or critical threshold is given, it will be used for both cases. Obviously these alerts will disappear
from themselves once enough time has passed.

Perfdata contain the three values (when available).

Required privileges: pg_monitor on PG10+; otherwise unprivileged role.

wal_files (8.1+)

Check the number of WAL files.

28 Chapter 2. Contents:

Open PostgreSQL Monitoring Documentation, Release 2.4

Perfdata returns the total number of WAL files, current number of written WAL, the current number of
recycled WAL, the rate of WAL written to disk since the last execution on the master cluster and the
current timeline.

Critical and Warning thresholds accept either a raw number of files or a percentage. In case of percentage,
the limit is computed based on:

100% = 1 + checkpoint_segments * (2 + checkpoint_completion_target)

For PostgreSQL 8.1 and 8.2:

100% = 1 + checkpoint_segments * 2

If wal_keep_segments is set for 9.0 to 9.4, the limit is the greatest of the following formulas:

100% = 1 + checkpoint_segments * (2 + checkpoint_completion_target)
100% = 1 + wal_keep_segments + 2 * checkpoint_segments

For 9.5 and above, the limit is:

100% = max_wal_size (as a number of WAL)
+ wal_keep_segments (if set)

Required privileges: <10:superuser (<10) v10:unprivileged user with pg_monitor v11:unprivileged user
with pg_monitor, or with grant EXECUTE on function

pg_ls_waldir

EXAMPLES

Execute service “last_vacuum” on host “host=localhost port=5432”:

check_pgactivity -h localhost -p 5432 -s last_vacuum -w 30m -c 1h30m

Execute service “hot_standby_delta” between hosts “service=pg92” and “service=pg92s”:

check_pgactivity --dbservice pg92,pg92s --service hot_standby_delta -w 32MB -
→˓c 160MB

Execute service “streaming_delta” on host “service=pg92” to check its slave “stby1” with the IP address
“192.168.1.11”:

check_pgactivity --dbservice pg92 --slave "stby1 192.168.1.11" --service
→˓streaming_delta -w 32MB -c 160MB

Execute service “hit_ratio” on host “slave” port “5433, excluding database matching the regexps “idelone” and
“(?i:sleep)”:

check_pgactivity -p 5433 -h slave --service hit_ratio --dbexclude idelone --
→˓dbexclude "(?i:sleep)" -w 90% -c 80%

Execute service “hit_ratio” on host “slave” port “5433, only for databases matching the regexp “importantone”:

check_pgactivity -p 5433 -h slave --service hit_ratio --dbinclude
→˓importantone -w 90% -c 80%

2.3. Probes 29

Open PostgreSQL Monitoring Documentation, Release 2.4

VERSION

check_pgactivity version 2.4, released on Wed Jan 30 2019

LICENSING

This program is open source, licensed under the PostgreSQL license. For license terms, see the LICENSE provided
with the sources.

AUTHORS

Author: Open PostgreSQL Monitoring Development Group Copyright: (C) 2012-2019 Open PostgreSQL Monitoring
Development Group

2.4 Developers

2.4.1 OPM Development Group (OPMDG)

The Open PostgreSQL Monitoring Development Group (OPMDG) is an international, unincorporated association of
individuals and companies who have contributed to the OPM project.

The right to modify the official code base and accept contributions (‘pull requests’) is hold by a group called the “OPM
Committers”. The current team of committers is listed below:

• Julien Rouhaud: https://github.com/rjuju

• Jehan-Guillaume De Rorthais: https://github.com/ioguix

• Thomas Reiss: https://github.com/frost242

The OPM Committers generally act as spokespeople for the OPMDG.

Contributors to OPM are selected to be committers based on the following loose criteria:

• several substantial contributions to the project

• responsibility for maintenance of one or more areas of the codebase

• track record of reviewing and helping other contributors with their patches

• high quality code contributions which require very little revision or correction for commit

• demonstrated understanding of the process and criteria for patch acceptance

Committers who have become inactive and have not contributed significantly to the OPM project in several months
can be removed as committers.

2.4.2 Development Information

The OPM project is open to any productive contribution.

Here’s a few links, if you want to help us build a better tool:

• for anything related to the core, graphs, UI. . . :

https://github.com/OPMDG/opm-core/issues

• for anything related to the Nagios perfdata handling in the UI:

30 Chapter 2. Contents:

https://github.com/rjuju
https://github.com/ioguix
https://github.com/frost242
https://github.com/OPMDG/opm-core/issues

Open PostgreSQL Monitoring Documentation, Release 2.4

https://github.com/OPMDG/opm-wh_nagios/issues

• for anything related to the check_pgactivity probe:

https://github.com/OPMDG/check_pgactivity/issues

• The code is hosted on github. Feel free to clone our repos and send Pull Resquests. The github organization is:

https://github.com/OPMDG

2.4.3 Warehouses

Overview

A warehouse is used to store a kind of data. In version 1 and 2, the only available warehouse is wh_nagios, which
stores Nagios’ perfdata.

Each warehouse must have a unique name, lowercase, with a leading wh_, and it’s own schema, named as the ware-
house (with the leading wh_). All objects have to be in this schema, and should probably be configured to be dumped.

Content

A warehouse should at least provide a pg subdirectory containing a PostgreSQL extension depending on opm-core
extension. It can also provide an ui subdirectory if the warehouse wants to provide some ui content. Then, it can
also provides various subdirectories for its need. For instance, wh_nagios warehouse provides a bin subdirectory
containing the nagios_dispatcher tool.

Therefore, a typical warehouse structure would be:

wh_my_warehouse
_ pg
_ ui

Implementing the PostgreSQL extension

ACL don’t have to be handled by the warehouse, as the only regular database access should be done by the ui. The
ACL are handled by the opm_core extension. Only a few tables and stored functions have to be implemented (see
below).

In order to integrate with the opm_core module, the warehouse extension has to implement at least some objects.

Tables

• services:

A table that inherits public.services and its constraints, which will store every needed information for a service within
the warehouse. A typical declaration will look like:

CREATE TABLE wh_name.services (
useful_col datatype,
...
PRIMARY KEY (id),
FOREIGN KEY (id_server) REFERENCES public.servers (id) ON UPDATE CASCADE ON DELETE

→˓CASCADE),
(continues on next page)

2.4. Developers 31

https://github.com/OPMDG/opm-wh_nagios/issues
https://github.com/OPMDG/check_pgactivity/issues
https://github.com/OPMDG

Open PostgreSQL Monitoring Documentation, Release 2.4

(continued from previous page)

UNIQUE (id_server, service)
) INHERITS (public.services);
SELECT pg_catalog.pg_extension_config_dump('wh_name.services', '') ;

• metrics:

A table that inherits public.metrics and its constraints, which will store every metrics (label information on all graphs)
for every service within the warehouse. A typical declaration will look like:

CREATE TABLE wh_name.metrics (
useful_col datatype,
...
PRIMARY KEY (id),
FOREIGN KEY (id_service) REFERENCES wh_name.services (id) MATCH FULL ON DELETE

→˓CASCADE ON UPDATE CASCADE
)
INHERITS (public.metrics);
SELECT pg_catalog.pg_extension_config_dump('wh_name.metrics', '') ;

• series:

A table that inherits public.series and its constraints, which will store association between metrics and graphs for every
service within the warehouse. A typical declaration will look like:

CREATE TABLE wh_nagios.series (
FOREIGN KEY (id_graph) REFERENCES public.graphs (id) MATCH FULL ON DELETE

→˓CASCADE ON UPDATE CASCADE,
FOREIGN KEY (id_metric) REFERENCES wh_name.metrics (id) MATCH FULL ON DELETE

→˓CASCADE ON UPDATE CASCADE
)
INHERITS (public.series);
CREATE UNIQUE INDEX ON wh_name.series (id_metric, id_graph);
CREATE INDEX ON wh_name.series (id_graph);
SELECT pg_catalog.pg_extension_config_dump('wh_name.series', '') ;

Stored functions

• get_metric_data((id_metric bigint, timet_begin timestamp with time zone, timet_end timestamp with time
zone) RETURNS TABLE (timet timestamp with time zone, value numeric):

Function that will be called by opm_core when displaying a graph. It should return all timestamped stored value for a
specific metric within the specified interval. The data don’t need to be ordered by the timestamp.

• grant_dispatcher(p_rolname text) RETURNS TABLE (operat text, approle name, appright text, objtype
text, objname text):

Function that will be called by opm_core, when granting the right a role to dispatch data. Is must return the list of all
objects granted. This is meant to grant CONNECT, USAGE, INSERT. . . permission on the warehouse’s objects that
store data.

• revoke_dispatcher(p_rolname text) RETURNS TABLE (operat text, approle name, appright text, objtype
text, objname text):

Function that will be called by opm_core, when revoking from a role to dispatch data. This function is the exact
opposite of grant_dispatcher, GRANT being replaced with REVOKE.

• purge_service(VARIADIC bigint[]) RETURNS bigint:

32 Chapter 2. Contents:

Open PostgreSQL Monitoring Documentation, Release 2.4

Function that will purge data according to the related servalid interval. It must return the number of services actually
purged.

And optionally:

• cleanup_service(id_service bigint):

This function won’t be called by the core module. Each warehouse has to handle his way of cleaning data (if needed).
It has to update the warehouse’s services.last_cleanup column when executed.

2.5 LICENSE

Copyright (c) 2012-2014, Open PostgreSQL Monitoring Development Group (OPMDG).

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and
without a written agreement is hereby granted, provided that the above copyright notice and this paragraph and the
following two paragraphs appear in all copies.

IN NO EVENT SHALL OPMDG BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDEN-
TAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS
SOFTWARE AND ITS DOCUMENTATION, EVEN IF OPMDG HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

OPMDG SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFT-
WARE PROVIDED HEREUNDER IS ON AN “AS IS” BASIS, AND OPMDG HAS NO OBLIGATIONS TO PRO-
VIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

2.5. LICENSE 33

Open PostgreSQL Monitoring Documentation, Release 2.4

34 Chapter 2. Contents:

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

35

	Important
	Contents:
	General
	OPM Core
	Probes
	Developers
	LICENSE

	Indices and tables

